Tricuspid annular disjunction can be isolated and even arrhythmogenic. A cardiac magnetic resonance study

Francesco Mangini, Eluisa Muscogiuri, Roberto Del Villano, Roberto Rosato, Grazia Casavecchia, Filippo Pigazzani, Elvira Bruno, Antonio Medico, Massimo Grimaldi, Robert W.W. Biederman


Mitral annular disjunction is related to increased arrhythmogenic risk; in a certain percentage of cases, mitral annular disjunction is associated with tricuspid annular disjunction. While the prognostic implications of mitral annular disjunction have been well established, there is still little data to define this aspect regarding the tricuspid annular disjunction. We present a case of a patient admitted for life-threatening ventricular arrhythmias that occurred during endurance sporting activity, who was found to have isolated tricuspid annular disjunction, not associated with mitral annular disjunction. Based on several factors, including the morphology and axis of QRS of the ventricular arrhythmic activity, and its behavior, including the response to antiarrhythmic treatment, and in keeping with the finding of edema and late gadolinium enhancement at the basal segment of the right ventricle free wall on cardiac magnetic resonance imaging, a direct relation between tricuspid annular disjunction and ventricular arrhythmias was highly conceivable. Control after three months showed almost complete remission of the previously described and persistence of LGE at the level of the basal segment of the free wall of the right ventricle, so giving strength to the hypothesis of an event related to increased acute RV free wall stress, secondary to high-intensity physical activity, established on a framework of chronic wall stress, as represented by LGE, similarly to what happens for mitral valve prolapse. To the best of our knowledge, this is the first case of a legitimately conceivable direct relation between tricuspid annular disjunction and ventricular arrhythmias.


tricuspid valve prolapse; tricuspid annular disjunction; mitral valve prolapse; mitral annular disjunction; ventricular arrhythmias; endurance exercise activity; cardiac magnetic resonance imaging

Full Text:



Freed LA, Levy D, Levine RA et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med. 1999; 341(1):1-7. doi:10.1056/NEJM199907013410101

Basso C, Perazzolo Marra M, Rizzo S et al. Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation. 2015; 132(7):556-566. doi:10.1161/CIRCULATIONAHA.115.016291

Essayagh B, Sabbag A, Antoine C et al. Presentation and outcome of arrhythmic mitral valve prolapse. J Am Coll Cardiol. 2020; 76(6):637-649. doi:10.1016/j.jacc.2020.06.029

Pavon AG, Monney P, Schwitter J. Mitral valve prolapse, arrhythmias, and sudden cardiac death: the role of multimodality imaging to detect high-risk features. Diagnostics (Basel). 2021; 11(4):683. doi:10.3390/diagnostics11040683

Ribeiro CL, Ginefra P, Albanesi Filho FM, Christiani LA, Quaresma JC, Gomes Filho JB. Prevalência de prolapso valvar tricúspide e aórtico em portadores de prolapso valvar mitral [Prevalence of tricuspid and aortic valve prolapse in patients with mitral valve prolapse]. Arq Bras Cardiol. 1989; 53(5):251-255. PMID: 2629684

Aabel EW, Chivulescu M, Dejgaard LA et al. Tricuspid annulus disjunction: novel findings by cardiac magnetic resonance in patients with mitral annulus disjunction. JACC Cardiovasc Imaging. 2021; 14(8):1535-1543. doi:10.1016/j.jcmg.2021.01.028

Dejgaard LA, Skjølsvik ET, Lie ØH et al. The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol. 2018; 72(14):1600-1609. doi:10.1016/j.jacc.2018.07.070

Lorinsky MK, Belanger MJ, Shen C et al. Characteristics and significance of tricuspid valve prolapse in a large multidecade echocardiographic study. J Am Soc Echocardiogr. 2021; 34(1):30-37. doi:10.1016/j.echo.2020.09.003

Tong J, Yew M, Huang W, Yong QW. The dance of death: cardiac arrest, mitral and tricuspid valve prolapses, and biannular disjunctions. Open Access Published. 2021. doi:10.1016/

Muraru D, Figliozzi S. Unlocking the mysteries of arrhythmic mitral valve prolapse by CMR imaging: is there a tricuspid annulus disjunction? JACC Cardiovasc Imaging. 2021; 14(8):1544-1547. doi:10.1016/j.jcmg.2021.02.030

Conti V, Migliorini F, Pilone M et al. Right heart exercise-training-adaptation and remodelling in endurance athletes. Sci Rep. 2021; 11(1):22532. doi:10.1038/s41598-021-02028-1

Anderson RD, Kumar S, Parameswaran R et al. Differentiating right- and left-sided outflow tract ventricular arrhythmias: classical ECG signatures and prediction algorithms. Circ Arrhythm Electrophysiol. 2019; 12(6):e007392. doi: 10.1161/CIRCEP.119.007392

Tada H, Tadokoro K, Ito S et al. Idiopathic ventricular arrhythmias originating from the tricuspid annulus: Prevalence, electrocardiographic characteristics, and results of radiofrequency catheter ablation. Heart Rhythm. 2007; 4(1):7-16. doi:10.1016/j.hrthm.2006.09.025

Cocker MS, Haykowsky MJ, Friedrich MG. Development of myocardial edema following acute bouts of intense physical exertion in healthy active men: a Cardiovascular Magnetic Resonance (CMR) study. J Cardiovasc Magn Reson. 2011; 13(Suppl 1):O111. doi: 10.1186/1532-429X-13-S1-O111

Barrese V, Taglialatela M. New advances in beta-blocker therapy in heart failure. Front Physiol. 2013; 4:323. doi:10.3389/fphys.2013.00323

Sanz-de la Garza M, Carro A, Caselli S. How to interpret right ventricular remodeling in athletes. Clin Cardiol. 2020; 43(8):843-851. doi:10.1002/clc.23350

Constant Dit Beaufils AL, Huttin O, Jobbe-Duval A et al. Replacement myocardial fibrosis in patients with mitral valve prolapse: relation to mitral regurgitation, ventricular remodeling, and arrhythmia. Circulation. 2021; 143(18):1763-1774. doi:10.1161/CIRCULATIONAHA.120.050214

Schairer JR, Keteyian S, Henry JW, Stein PD. Left ventricular wall tension and stress during exercise in athletes and sedentary men. Am J Cardiol. 1993; 71(12):1095-1098. doi:10.1016/0002-9149(93)90579-2

Comunale G, Susin FM, Mynard JP. Ventricular wall stress and wall shear stress homeostasis predicts cardiac remodeling during pregnancy: a modeling study. Int J Numer Method Biomed Eng. 2022; 38(1):e3536. doi:10.1002/cnm.3536

Shah SN, Gangwani MK, Oliver TI. Mitral valve prolapse. [Updated 2021 Aug 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. PMID: 29262039.

Zorzi A, Susana A, De Lazzari M et al. Diagnostic value and prognostic implications of early cardiac magnetic resonance in survivors of out-of-hospital cardiac arrest. Heart Rhythm. 2018; 15(7):1031-1041. doi:10.1016/j.hrthm.2018.02.033

Chakrabarti AK, Bogun F, Liang JJ. Arrhythmic mitral valve prolapse and mitral annular disjunction: clinical features, pathophysiology, risk stratification, and management. J Cardiovasc Dev Dis. 2022; 9(2):61. doi:10.3390/jcdd9020061

Gentry III JL, Phelan D, Desai MY, Griffin BP. The role of stress echocardiography in valvular heart disease: a current appraisal. Cardiology. 2017; 137(3):137-150. doi:10.1159/000460274

Baumgartner H, Falk V, Bax JJ, et al. ESC scientific document group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017; 38(36):2739-2791. doi:10.1093/eurheartj/ehx391

Althunayyan A, Petersen SE, Lloyd G, Bhattacharyya S. Mitral valve prolapse. Expert Rev Cardiovasc Ther. 2019; 17(1):43-51. doi:10.1080/14779072.2019.1553619


Copyright (c) 2022 Francesco Mangini, Eluisa Muscogiuri, Roberto Del Villano, Roberto Rosato, Grazia Casavecchia, Filippo Pigazzani, Elvira Bruno, Antonio Medico, Massimo Grimaldi, Robert W.W. Biederman

Creative Commons License
Archive of Clinical Cases is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


ISSN: 2360-6975