A brief insight into systemic lupus erythematosus pathogenesis

Tudor Azoicai, Irina Draga Caruntu


Systemic lupus erythematosus is an autoimmune disease which afflicts many systems. The precise pathogenesis is still unclear, but strong evidences sustain a multifactorial mechanism, based on the interaction of various genetic, epigenetic, environment, hormonal and immune-regulatory factors. Nowadays, the research interest focuses on cellular and molecular alterations, as results of the complexity of apoptotic process and immune responses acting as initiators and leading to tissue injury. The paper points out on key pathogenic cells, molecules and processes involved in SLE pathogenesis, namely B and T lymphocytes, mast cells, apoptosis, complement system and oxidative stress.


systemic lupus erythematosus, pathogenesis, B/T lymphocytes, apoptosis, mast cells, complement system, oxidative stress

Full Text:



Doria A, Zen M, Bettio S, et al. Autoinflammation and autoimmunity: bridging the divide. Autoimmun Rev 2012; 12:22-30.

Singh RP, Waldron RT, Hahn BH. Genes, tolerance and systemic autoimmunity. Autoimmun Rev 2012; 11:664-669.

Helmick CG, Felson DT, Lawrence RC, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 2008; 58(22):15-25.

Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008; 58(1):26-35.

Abdwani R, Rizvi SG, El-Nour I. Childhood systemic lupus erythematosus in Sultanate of Oman: demographics and clinical analysis. Lupus 2008; 17:683-686.

Barron KS, Silverman ED, Gonzales J, Reveille JD. Clinical, serologic, and immunogenetic studies in childhood-onset systemic lupus erythematosus. Arthritis Rheum 1993; 36:348-354.

Font J, Cervera R, Espinosa G, et al. Systemic lupus erythematosus (SLE) in childhood: analysis of clinical and immunological findings in 34 patients and comparison with SLE characteristics in adults. Ann Rheum Dis 1998; 57:456-459.

Hiraki LT, Benseler SM, Tyrrell PN, et al. Clinical and laboratory characteristics and long-term outcome of pediatric systemic lupus erythematosus: a longitudinal study. J Pediatr 2008; 152:550-556.

Hoffman IE, Lauwerys BR, De Keyser F, et al. Juvenile-onset systemic lupus erythematosus: different clinical and serological pattern than adult-onset systemic lupus erythematosus. Ann Rheum Dis 2009; 68:412-415.

Mahmoud SS, Bazaraa HM, Lotfy HM, Abd-El-Aziz DM. Renal involvement in childhood-onset systemic lupus erythematosus in Egypt. Rheumatol Int 2012; 32:47-51.

Jacobsen S, Petersen J, Ullman S, et al. A multicentre study of 513 Danish patients with systemic lupus erythematosus. I. Disease manifestations and analyses of clinical subsets. Clin Rheumatol 1998; 17:468-477.

Seligman VA, Lum RF, Olson JL, et al. Demographic differences in the development of lupus nephritis: a retrospective analysis. Am J Med 2002; 112:726-729.

Choi J, Kim ST, Craft J. The pathogenesis of systemic lupus erythematosus - an update. Curr Op Immunol 2012; 24:651-657.

Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nature Rev Nephrol 2015; 11:329-341.

Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358(9):929-939.

Crow MK. Collaboration, genetic associations, and lupus erythematosus. N Engl J Med 2008; 358(9):956-961.

Leffler J, Bengtsson AA, Blom AM. The complement system in systemic lupus erythematosus: an update. Ann Rheum Dis 2014; 73:1601-1606.

Shah D, Mahajan N, Sah S, et al. Oxidative stress and its biomarkers in systemic lupus erythematosus. J Biomed Sci 2014; 21(1):23.

Wu T, Qin X, Kurepa Z, et al. Shared signaling networks active in B cells isolated from genetically distinct mouse models of lupus. J Clin Invest 2007; 117:2186-2196.

Sang A, Zheng Y Y, Morel L. Contributions of B cells to lupus pathogenesis. Mol Immunol 2014; 62:329–338.

Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 1993; 177:999-1008.

Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med 1993;177:1009-1020.

Wardemann H, Yurasov S, Schaefer A, et al. Predominant autoantibody production by early human B cell precursors. Science 2003; 301:1374-1377.

Shlomchik MJ. Sites and stages of autoreactive B cell activation and regulation. Immunity 2008; 28:18-28.

Chan TD, Brink R. Affinity-based selection and the germinal center response. Immunol Rev 2012; 247:11-23.

Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Ann Rev Immunol 2007; 25:419-441.

Rifkin IR, Leadbetter EA, Beaudette BC, et al. Immune complexes present in the sera of autoimmune mice activate rheumatoid factor B cells. J Immunol 2000; 165:1626-1633.

Crispín JC, Kyttaris VC, Terhorst C, Tsokos GC. T cells as therapeutic targets in SLE. Nat Rev Rheumatol 2010; 6:317-325.

Liossis SN, Ding XZ, Dennis GJ, Tsokos GC. Altered pattern of TCR/CD3-mediated proteintyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J Clin Invest 1998; 101:1448-1457.

Enyedy EJ, Nambiar MP, Liossis SN, et al. Fc epsilon receptor type I gamma chain replaces the deficient T cell receptor zeta chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum 2001; 44:1114-1121.

Krishnan S, Juang YT, Chowdhury B, et al. Differential expression and molecular associations of Syk in systemic lupus erythematosus T cells. J Immunol 2008; 181:8145-8152.

Deng GM, Liu L, Bahjat FR, et al. Suppression of skin and kidney disease by inhibition of spleen tyrosine kinase in lupus-prone mice. Arthritis Rheum 2010; 62:2086-2092.

Strasser A, Jost P, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30:180–192.

Blank U, Essig M, Scandiuzzi L, et al. Mast cells and inflammatory kidney disease. Immunol Rev 2007; 217:79-95.

Eddy AA. Mast cells find their way to the kidney. Kidney Int 2001; 60:375-377.

Pelletier C, Guerin-Marchand C, Iannascoli B, et al. Specific signaling pathways in the regulation of TNF-alpha mRNA synthesis and TNF-alpha secretion in RBL-2H3 mast cells stimulated through the high affinity IgE receptor. Inflamm Res 1998; 47:493-500.

Lin L, Gerth AJ, Peng SL. Susceptibility of mast cell-deficient W/Wv mice to pristane-induced experimental lupus nephritis. Immunol Lett 2004; 91:93-97.

Charles N, Hardwick D, Daugas E, et al. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med 2010; 16:701-707.

Sekine H, Ruiz P, Gilkeson GS, Tomlinson S. The dual role of complement in the progression of renal disease in NZB/W F(1) mice and alternative pathway inhibition. Mol Immunol 2011; 49(1–2):317-323.

Wang G, Pierangeli SS, Papalardo E, et al. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 2010; 62(7):2064-2072.

Ben Mansour R, Lassoued S, Elgaied A, et al. Enhanced reactivity to malondialdehyde-modified proteins by systemic lupus erythematosus autoantibodies. Scand J Rheumatol 2010; 39(3):247-253.

Perl A. Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity 2010; 43(1):1-6.

Hassan SZ, Gheita TA, Kenawy SA, et al. Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. Int J Rheum Dis 2011; 14(4):325-331.

Gheita TA, Kenawy SA. Measurement of malondialdehyde, glutathione, and glutathione peroxidase in SLE patients. Methods Mol Biol 2014; 1134:193-199.

Sekine H, Kinser TT, Qiao F, et al. The benefit of targeted and selective inhibition of the alternative complement pathway for modulating autoimmunity and renal disease in MRL/lpr mice. Arthritis Rheum 2011; 63:1076-1085.

Kerboua KE, Boumediene A, Haiba F, Batouche D. The alternative complement pathway activity may depend on plasma malondialdehyde level in systemic lupus erythematosus patients: Preliminary results. Egypt Rheumatol 2016; DOI: 10.1016/j.ejr.2016.02.003.

Oates JC. The biology of reactive intermediates in systemic lupus erythematosus. Autoimmunity 2010; 43:56–63.

Perl A. Emerging new pathways of pathogenesis and targets for treatment in systemic lupus erythematosus and Sjogren’s syndrome. Curr Opin Rheumatol 2009; 21(5):443-447.

DOI: http://dx.doi.org/10.22551/2016.10.0301.10066

Copyright (c) 2016 Archive of Clinical Cases

Creative Commons License
Archive of Clinical Cases is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


ISSN: 2360-6975