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Abstract 

Systemic lupus erythematosus is an autoimmune disease which afflicts many systems. The precise pathogenesis 
is still unclear, but strong evidences sustain a multifactorial mechanism, based on the interaction of various 
genetic, epigenetic, environment, hormonal and immune-regulatory factors. Nowadays, the research interest 
focuses on cellular and molecular alterations, as results of the complexity of apoptotic process and immune 
responses acting as initiators and leading to tissue injury. The paper points out on key pathogenic cells, 
molecules and processes involved in SLE pathogenesis, namely B and T lymphocytes, mast cells, apoptosis, 
complement system and oxidative stress.  
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Epidemiologic landmarks 

 

 Systemic lupus erythematosus (SLE) is 

an autoimmune condition characterized by 

various clinical manifestations associated with 

the presence in 90% of cases of anti-nuclear 

auto-antibodies. Due to the complex 

pathogenic context, extremely well studied, 

mainly on murine models, SLE is regarded as 

“prototype” for the autoimmune pathology [1, 

2]. Occurrence of tissue lesions as well as 

clinical symptoms is determined by genetic, 

epigenetic, environment, hormonal and 

immune-regulatory factors [1, 2].   

The most afflicted category of population 

is that of young women, with a peak incidence 

between 15 and 40 years and a 6-10:1 female 

to male ratio. African-American, Latin and 

Asian individuals have a higher prevalence of 

SLE and multiorgan damage than other ethnic 

groups [3, 4]. 

Renal impairment is recorded in 50-80% of 

juvenile lupus cases, without variations 

between ethnic groups, and in less than 30% 

of late SLE cases [5-10]. Renal damage may 

represent the first manifestation of SLE, 

however it is frequently diagnosed at 1-5 years 

from the onset of the disease; it may also arise 

at more than 5 years after initiation, in any 

moment of evolution [11, 12]. 

 

 

Pathogenic mechanism 

 

The main character in the pathogenic 

mechanism of SLE is the immune system [13, 

14]. The above mentioned factors act either 

independently or jointly on the immune 

system, triggering the production of 

autoreactive B lymphocytes or abnormal types 

of activated T lymphocytes and of antigen 

presenting cells, with the consequent 

manufacture of auto-antibodies, immune 

complexes and cytokines, all these elements 

leading to installation of inflammation and, 
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subsequently, of specific organ lesions [13-

15]. 

Over-activation of immune system is 

especially promoted by genetic factors [16]. 

Genetic influences are often a cumulated 

effect of several genes, while rarely they rise 

due to presence of numerous nucleotide 

polymorphisms or to a single gene defect – 

resulting in an increased risk for SLE [16]. It is 

well ascertained the essential role played by 

genes responsible for immune regulation, HLA 

polymorphism, synthesis of IFN-α, 

complement proteins, receptors for 

immunoglobulins or Toll-like, cell-adhesion 

molecules, and molecules involved in 

lymphocyte activation (STAT4, BLK, PTPN22) 

[16].  

Currently, researches on the pathogenic 

mechanism of SLE are focused on cellular and 

molecular alterations. The most recent 

theories target: (i) the role of apoptosis, 

through a defect in removal of cell debris 

resulted from apoptosis, which may become 

auto-antigens, (ii) the role of dendritic and T 

cells, abnormally activated by the afflux of 

autoantigens resulted from apoptosis, which 

produce excessive cytokines – in the 

circumstances of a disturbance in the 

mechanism of T lymphocytes regulation; (iii) 

the role of hyperactivated B lymphocytes [13, 

14]. 

The resulted autoantibodies and immune 

complexes are important mediators required in 

the occurrence of tissue damage characteristic 

for morphologic lesions of SLE (such as lupus 

nephritis). Nevertheless, the immune 

complexes are insufficient to explain the 

sequences of pathogenic mechanism. The 

intervention of complement and cytokines is 

mandatory, since they are responsible for the 

amplification and maintenance of autoimmune 

processes.  

The alternative pathway of complement 

system activation [17] and oxidative stress [18] 

are also considered noteworthy participants in 

SLE pathogenesis. 

B lymphocyte signaling 

Studies on murine models revealed 

abnormal signaling mechanisms through B 

lymphocytes, with the AKT/mTOR pathway 

playing an essential role [19, 20]. The gene 

analysis of signaling molecules specific for B 

lymphocytes identified two inhibitor receptors, 

Lyn and CD22, which are critical in the 

regulation of B lymphocyte phenotype 

expressed in SLE. Additionally, FcɣRIIB is 

another inhibitor receptor with a key role in 

impeding the development of this phenotype 

[19].  

B lymphocyte tolerance 

The failure in B cell tolerance is 

considered another significant event in 

triggering the pathogenic mechanism of SLE. 

The central tolerance process takes place in 

bone marrow, the immature auto-reactive B 

lymphocytes being removed, mainly through 

interventions concentrated on their specific 

receptors [21, 22]. Approximately 55-75% of 

immature B cell receptors are auto-reactive, 

while normal tolerance mechanisms eliminates 

them from B lymphocyte repertoire [23]. B 

cells that surpass central tolerance will migrate 

into the spleen and will become mature cells. 

In this stage, the auto-reactive B lymphocytes 

are eliminated through peripheral tolerance 

mechanisms (deletion, anergy, follicular 

exclusion and clonal ignorance) [24]. 

Supplementary, recent study have shown that 

auto-reactive B lymphocytes originating in the 

germinal center of lymph nodes are tolerate if 

the auto-antigens (i.e. nucleoproteins released 

during apoptosis), are expressed in large 

quantities in the vicinity of the germinal center 

[25]. If B lymphocytes are antigen-

independent, the tolerance mechanisms 

involve Toll-like receptors (TLR7 and TLR9) 

and dendritic cells [26, 27].  

T lymphocyte signaling 

Multiple anomalies have been identified in 

T lymphocytes signaling pathways in SLE 

patients [28]. Experimental studies on murine 

SLE models have shown that stimulation of T 

lymphocyte receptor (TCR) induces increased 

intracellular calcium levels in T cells. This is 

caused by levels of CD3ζ, an extremely 

important component of TCR signaling 

pathway [29], which are compensated by the 

increased expression of analogues of FcεRγ 

molecules [30]. Unlike CD3zeta, FcεRγ does 

not bind the protein kinase associated with the 

zeta chain (ZAPζ), but conversely connects 
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with spleen tyrosin kinase (Syk), which results 

in the increase of calcium level after binding 

with TCR [31]. Inhibition of Syk leads to 

inhibition of the development of kidney disease 

hence anti-Syk therapy reduces levels of T 

lymphocytes and prolongs survival, despite the 

lack of effect on auto-antibodies production 

[32]. Therefore, the alteration of T lymphocyte 

signaling pathway determines the modification 

of intensity of autoimmune response and 

improvement of clinical symptomatology.  

Apoptosis 

Two defects of apoptosis are associated 

with SLE: (i) the failure of immune system cells 

to enter apoptosis program, due to defects in 

Fas pathway, which leads to production of 

auto-reactive lymphocytes, triggering initiation 

of pathogenic mechanism of SLE; (ii) the 

impairment of the removal for apoptotic debris 

causes inflammation, which implies activation 

of TLR7 and TLR9 pathway, leading to 

initiation of pathogenic mechanism of SLE 

[33]. 

Mast cells 

Besides lymphocytes and macrophages, a 

significant number of mast cells contribute to 

the structure of the inflammatory infiltrate [34, 

35]. The role of the mast cell in SLE 

pathogeny currently represents an interesting 

issue, due to the enormous potential to 

synthesize and release inflammatory factors 

[36]. However, there are no data which 

correlate the number of mast cells with SLE 

severity. On the other hand, recent 

experimental data substantiate the 

involvement of these cells in protective 

actions, as they intervene in tissue repair and 

remodeling processes following inflammation 

[37]. Unfortunately, reproducibility of these 

results was not possible [38], which makes the 

positive role of mast cells questionable.  

Complement system and oxidative stress  

Complement system ensures the balance 

between tissue protection and destruction, 

through three known activation pathway 

(classic, alternative and lectin pathway). This 

dual role is manifested in SLE through 

protection achieved by clearance of immune 

complexes and apoptotic debris and 

destruction, which through its products, 

mediates the inflammatory process developed 

in the kidney and other target organs [17]. 

Specifically, in SLE the alternative 

pathway is preferentially activated, its selective 

inhibition being beneficial – probably due to 

positive effects of the activation of classic and 

lectin pathway [17, 39]. 

Concurrently, pathogenic mechanism of 

SLE involves also the critical intervention of 

oxidative stress, which has the potential to 

promote an autoimmune response. 

Assessment of oxidative stress may have 

prognostic value for the evolution of SLE [40]. 

Recent evidence indicates that the imbalance 

in oxidative stress, translated through increase 

of malondialdehyde (MDA) levels and 

decrease of natural antioxidants is a major 

event in progression of SLE [41-44]. Increased 

levels of MDA are correlated with intense 

activation of the alternative pathway of 

complement, both being in accordance with 

SLE activity [18, 39, 45, 46]. Moreover, it was 

proved that activation of alternative pathway of 

complement and presence of MDA represents 

major mediators for tissue inflammation in SLE 

progression [47]. 

Consequently, it is believed that inhibition 

of oxidative stress may represent a novel 

therapeutic approach in SLE, oriented both at 

the cellular as well as molecular level [48]. 

 

 

Final remarks 

 

The understanding of the mechanism 

responsible for the pathogenesis of SLE 

requires a better knowledge of the intimate 

relationships developed between cells and 

molecules involved in apoptosis and immune 

responses.
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