The Use of Ertapenem in Postoperative Polymicrobial Peritonitis - case report

Laura Gavril*,1,2, Ionela-Alina Grosu1, Lavinia Bodescu Amancei2, Ioana Grigoraș1,2

1 “Grigore T. Popa” University of Medicine and Pharmacy, Iași, 2 Anesthesia and Intensive Care Department - Regional Institute of Oncology, Iași, Romania

Abstract

A 59 year-old male patient diagnosed with cecal cancer, surgically treated - right hemicolectomy with ileotransverse anastomosis suddenly presented in the 5th postoperative day fever, hypotension, abdominal pain, and vomiting faeces. The intraoperative diagnosis was postoperative peritonitis due to anastomotic leak; exploratory laparotomy, segmental colectomy, transverse ileostomy, lavage and drainage were performed. Before surgical reintervention, blood cultures were performed and empirical antiinfective therapy was started using ertapenem, vancomycin and fluconazole. A postoperative ICU admission was decided due to septic shock and MODS: acute respiratory failure, acute cardiovascular failure, coagulopathy and metabolic acidosis, which required complex treatment: ventilatory support, haemodynamic optimization, antibiotics, analgesia, deep venous thromboembolism prophylaxis, nutrition. In the 3rd day after reintervention, microbiological examination of the intraoperative collected peritoneal fluid identified a triple germ association: Escherichia coli, Enterococcus faecalis and Proteus mirabilis, which were sensitive to the chosen antibiotics; the blood cultures were sterile. After 3 days of severe evolution, the multiple organ dysfunction gradually improved and the patient was discharged from ICU 10 days later.

Keywords: postoperative polymicrobial peritonitis, Ertapenem, Carmeli Score, MODS septic shock

Introduction

Peritonitis is an inflammation of the peritoneum, the tissue that lines the inner wall of the abdomen and covers and supports most of the abdominal organs. Peritonitis is usually caused by infection from bacteria or fungi [1]. Peritonitis may result in septic shock, multiple organ dysfunction syndrome and death. Septic shock is a life-threatening condition that happens when the blood pressure drops to a dangerously low level after an infection [2, 3].

In any septic patient, the clinician must assess the presence of acute organ dysfunction (severe sepsis). The presence of acute organ dysfunction is often clinically recognized by the patient’s signs and symptoms. Complex monitoring and laboratory data will confirm the diagnosis of organ dysfunction.

Clinical signs of organ dysfunction consist of: altered consciousness, confusion, psychosis, delirium (central nervous system dysfunction), tachypnea, hypoxemia, oxygen saturation <90%, decreased ratio of arterial oxygen vs. inspired oxygen (respiratory dysfunction), increased liver enzymes, jaundice, increased prothrombin time, hypalbuminemia, (hepato-biliary dysfunction), tachycardia, hypotension, decreased systemic vascular resistance (cardiovascular dysfunction),
oliguria, anuria, increased creatinine (renal failure), anemia, thrombocytopenia, abnormal coagulation tests, decreased levels of C Reactive Protein (CRP), increased D-dimers (hematologic dysfunction).

The time evolution of new therapeutic principles, starting with Kirschner in the early 20th century, significantly reduced the mortality rate associated with intra-abdominal infections over the last century [4-6] (Fig. 1). The basic strategies of modern approach consist of source control, identification of involved microorganisms, antimicrobial treatment and complex critical care.

Postoperative peritonitis is usually classified with a 3 score value on the Carmeli scale and imposes the need for first-line therapy, using a combination of broad-spectrum antibiotics, which usually includes a 2nd generation carbapenem (such as imipenem, meropenem) [7, 8].

Case report

A 59 year-old male patient, with cecal cancer, secondary anemia and neoplastic cachexia was admitted in Surgery Clinic of the Regional Institute of Oncology Iași. Computer tomographic examination revealed bilobare liver metastases. The surgical treatment consisted in right hemicolecction with ileotransverse anastomosis. In the first postoperative day, the patient had a favorable evolution and was discharged from Intensive care unit (ICU) after 24 hours.

In the 5th postoperative day, the patient suddenly presented the following symptoms: fever, hypotension, abdominal pain and tenderness and vomiting faeces. Surgical reintervention was decided. The intraoperative diagnosis was postoperative peritonitis due to anastomotic leak and exploratory laparotomy, segmental colectomy, transverse ileostomy, lavage and drainage were performed.

Before surgical reintervention, blood cultures were performed and empirical antinfective therapy was started using ertapenem (1g/day), vancomycin (1g/12h) and fluconazole (800mg/day) and was continued for the next 3 days.

A postoperative ICU admission was decided due to septic shock and multiple organ dysfunction syndrome (MODS): acute respiratory failure, acute cardio-circulatory failure, coagulopathy, metabolic acidosis (table 1), which required complex treatment (ventilatory support, haemodynamic optimization, antibiotics, analgesia, deep venous thromboembolism prophylaxis, nutrition).

Fig. 1. Mortality over time of intra-abdominal infections [6]
Table 1. ICU status

<table>
<thead>
<tr>
<th>Intensive Care Unit status</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM 65 mmHg</td>
<td>Cardio-circulatory failure</td>
</tr>
<tr>
<td>HR 95 bpm</td>
<td>Acute Lung Injury (ALI)</td>
</tr>
<tr>
<td>PaO₂/FiO₂ 235</td>
<td>Coagulopathy/ thrombocitopenia</td>
</tr>
<tr>
<td>APTT 54 sec.</td>
<td>Anemia</td>
</tr>
<tr>
<td>INR 1.4</td>
<td>Methabolic acidosis</td>
</tr>
<tr>
<td>Thrombocytes 129.000/mm³</td>
<td>Inflammatory Syndrome</td>
</tr>
<tr>
<td>Haemoglobin 8g/dl</td>
<td></td>
</tr>
<tr>
<td>Hematocrit 25%</td>
<td></td>
</tr>
<tr>
<td>pH 7.31</td>
<td></td>
</tr>
<tr>
<td>Lactate 1.4 mmol/l</td>
<td></td>
</tr>
<tr>
<td>CRP 16 mg/dl</td>
<td></td>
</tr>
<tr>
<td>Procalcitonine 1.2 ng/dl</td>
<td></td>
</tr>
</tbody>
</table>

In the 3rd day after reintervention, microbiological examination of the intraoperatory collected peritoneal fluid identified a triple germ association: *Escherichia coli*, *Enterococcus faecalis* and *Proteus mirabilis*, which were sensitive to the chosen antibiotics. The blood cultures were sterile. After 3 days of severe evolution, the multiple organ dysfunction gradually improved and the patient was discharged from ICU 10 days later (Fig. 2).

![Fig. 2. ICU dynamics of inflammatory markers (fever, white blood cell count, procalcitonine and C reactive protein), microbiological tests and antiinfective therapy](image)

Discussions

Patients with postoperative peritonitis are at high risk of having gram-negative multi-resistant pathogen infections and the recommended empirical antibiotic therapy consists of a second generation carbapenem (imipenem, meropenem) associated with a

www.clinicalcases.eu
coverage of gram-positive germs (mainly, Enterococcus spp.). The first generation carbapenem is recommended in case of community-acquired peritonitis.

But the use of second generation carbapenems is associated with high risk of modified hospital ecology with the emergence of highly resistant strains.

In order to choose an appropriate carbapenem agent for treatment of nosocomial infections it is important to assess the patient’s risk of infection with gram-negative, multidrug-resistant pathogens [8-11].

Risk factors for infection with gram-negative multidrug-resistant Enterobacteriaceae include: recent contact with sanitary system, but without invasive procedures (e.g.: recent admissions in hospital/ day care/ hospice), recent antibiotic therapy (≥14 days in the last 90 days), age ≥65 years, patient with comorbidities (e.g.: renal failure).

Risk factors for infection with multidrug-resistant Pseudomonas include: long period hospitalizations and/or infections after invasive procedures (>5 days), recent antibiotic therapy (≥14 days in the last 90 days), and multiple comorbidities (cystic fibrosis, respiratory diseases, AIDS, neutropenia, severe immune deficit) (Table 2).

Table 2. Complicated Intra-abdominal Infection Guidelines [9]

<table>
<thead>
<tr>
<th>No risk factors for MDR</th>
<th>Risk factors for Enterobacteriaceae MDR</th>
<th>Risk factors for Pseudomonas MDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous contact with sanitary system</td>
<td>Recent contact with sanitary system but without invasive procedures (e.g.: recent admissions in hospital/ day care/hospice)</td>
<td>Long period hospitalizations and/or infections after invasive procedures (>5 days)</td>
</tr>
<tr>
<td>Previous therapy with antibiotics</td>
<td>Recent antibiotic therapy (≥14 days in the last 90 days)</td>
<td>Recent antibiotic therapy (≥14 days in the last 90 days)</td>
</tr>
<tr>
<td>Patient factors</td>
<td>Age ≥65 years, patient with comorbidities (e.g.: renal failure)</td>
<td>Patients with multiple comorbidities (AIDS, respiratory diseases, cystic fibrosis, neutropenia, severe immune deficit)</td>
</tr>
<tr>
<td>Carbapenem selection</td>
<td>Limited use of carbapenems</td>
<td>Ertapenem (group 1 carbapenems)</td>
</tr>
</tbody>
</table>

The reported patient had ongoing hospitalisation, recent surgery, one day antibiotic course (antibioprophylaxy) and no comorbidities.

The use of ertapenem in postoperative peritonitis as empirical antibiotherapy may result in several advantages: good patient outcome and improved hospital ecology.

Thus, ertapenem use is a 2nd generation carbapenem sparing strategy, which may avoid the selection of resistant strains and preserve the Enterobacteriaceae susceptibility.

Ertapenem has little impact on the ecology of the hospital environment. The use of ertapenem in medical practice minimizes the selective pressure on multi-resistant pathogens and maintain unchanged the susceptibility profile of Enterobacteriaceae, Pseudomonas spp. enhancing susceptibility to imipenem, levofloxacin and cefepime.
A retrospective longitudinal hospital database study, that included nine medical wards (400 beds) examined group 1 and group 2 carbapenem resistance amongst <i>Pseudomonas aeruginosa</i> in Israel from 2001 to 2005 [7-9]. For 139,185 patient admissions, 541,150 DDD of antibiotics, 4,637 DDD of group 2 carbapenems and 2,130 DDD of ertapenem were prescribed. Multivariate analysis showed that ertapenem was not associated with the development of imipenem-resistant <i>P. aeruginosa</i> (<p>=0.2); however, imipenem and meropenem were significantly associated with the development of imipenem-resistant <i>P. aeruginosa</i> (<p>=0.001).

Conclusions

The results of in vitro and clinical studies showed that the use of ertapenem did not decrease susceptibility of <i>P. aeruginosa</i>, Enterobacteriaceae or other gram-negative pathogens to carbapenems [7, 12].

The treatment with ertapenem was effective in a patient with postoperative peritonitis, septic shock and MODS. Ertapenem, used as first-line therapy, circumvents the need for a 2nd generation carbapenem (imipenem, meropenem) and preserves the ecology of the hospital.

References